Virbickaite, Audrone

Departamento: Quantitative methods


Since September 2020, Audra works as an Assistant professor of Statistics and Econometrics at CUNEF. Her research interests include Bayesian econometrics, particle filters, time series analysis, time-varying volatility models, among others. Prior to joining CUNEF, Audra worked as an Assistant Professor of Econometrics at the University of Balearic Islands, Palma, and, before that, she did a two-year post-doctoral stay at the University of Konstanz, Germany. During her doctoral studies at the Statistics Department, Universidad Carlos III de Madrid, Audra did a pre-doctoral reserach stay at the Chicago Booth School of Business, where she worked with prof. Hedibert Lopes. Audra has presented at many international congresses and conferences. She has published in internationally recognized scientific journals. Audra currently serves as a board member of European Association of Young Economists. 

Formación Académica

2008 Bachelor's degree in Economics, Vilnius University, Lithuania.

2011 Master's degree in Business Administration and Quantitative Methods, Statistics Department, Universidad Carlos III de Madrid

2015 Doctoral Degree in Business Administration and Quantitative Methods, Statistics Department, Universidad Carlos III de Madrid

Áreas de interés

Bayesian econometrics, Financial econometrics,Time-varying volatility models, Sequential Monte Carlo Methods, Particle filters, Copulas, Time series analysis

Publicaciones en revistas científicas

  • Virbickaite, A., Frey, C., Macedo, D.N (2020). Sequential Stock Return Prediction Through Copulas, The Journal of Economic Asymmetries, Forthcoming.
  • Virbickaite, A., Lopes, H.F. (2019). Bayesian Semi-Parametric Markov Switching Stochastic Volatility Model, Applied Stochastic Models in Business and Industry, 35(4), 978-997.
  • Virbickaite, A., Lopes, H.F., Ausin, C., Galeano, P. (2019). Particle learning for Bayesian semi-parametric stochastic volatility model, Econometric Reviews, 38 (9), 1007-1023.
  • Virbickaite, A., Ausin, C., Galeano, P. (2016). A Bayesian Non-Parametric Approach to Asymmetric Dynamic Conditional Correlation Model With Application to Portfolio Selection, Computational Statistics and Data Analysis, 100, 814–829.
  • Virbickaite, A., Ausin, C., Galeano, P. (2015). Bayesian Inference Methods for Univariate and Multivariate GARCH Models: a Survey, Journal of Economic Surveys, 29 (1), 76–96.

Esta página web utiliza cookies tanto propias como de terceros para mejorar la experiencia del usuario en la web. La base legal es el consentimiento del usuario, salvo en el caso de las cookies técnicas, que son imprescindibles para navegar por esta web. El titular de la web, responsable del tratamiento de las cookies, y sus datos de contaco son accesibles en el Aviso Legal. Puede obtener más información sobre el uso de cookies en esta web haciendo clic aquí.